Summary: Moiré quantum materials host exotic electronic phenomena through enhanced internal Coulomb interactions in twisted two-dimensional heterostructures1–4. When combined with the exceptionally high electrostatic control in atomically thin materials5–8, moiré heterostructures have the potential to enable next-generation electronic devices with unprecedented functionality. However, despite extensive exploration, moiré electronic phenomena have thus far been limited to impractically low cryogenic temperatures9–14, thus precluding real-world applications of moiré quantum materials. Here we report the experimental realization and room-temperature operation of a low-power (20 pW) moiré synaptic transistor based on an asymmetric bilayer graphene/hexagonal boron nitride moiré heterostructure. The asymmetric moiré potential gives rise to robust electronic ratchet states, which enable hysteretic, non-volatile injection of charge carriers that control the conductance of the device. The asymmetric gating in dual-gated moiré heterostructures realizes diverse biorealistic neuromorphic functionalities, such as reconfigurable synaptic responses, spatiotemporal-based tempotrons and Bienenstock–Cooper–Munro input-specific adaptation. In this manner, the moiré synaptic transistor enables efficient compute-in-memory designs and edge hardware accelerators for artificial intelligence and machine learning. We report the experimental realization and room-temperature operation of a low-power (20 pW) moiré synaptic transistor based on an asymmetric bilayer graphene/hexagonal boron nitride moiré heterostructure.

Moiré synaptic transistor with room-temperature neuromorphic functionality

Source: Hersam, Mark C. - 1428-01-01T04:59:59.999Z

0 UP DOWN

  • Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Zheng, Z. et al. Unconventional ferroelectricity in moiré heterostructures. Nature 588, 71–76 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Mak, K. F. & Shan, J. Semiconductor moiré materials. Nat. Nanotechnol. 17, 686–695 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Sangwan, V. K. et al. Self-aligned van der Waals heterojunction diodes and transistors. Nano Lett. 18, 1421–1427 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Sangwan, V. K. et al. Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide. Nature 554, 500–504 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Beck, M. E. & Hersam, M. C. Emerging opportunities for electrostatic control in atomically thin devices. ACS Nano 14, 6498–6518 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Beck, M. E. et al. Spiking neurons from tunable Gaussian heterojunction transistors. Nat. Commun. 11, 1565 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Serlin, M. et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science 367, 900–903 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Xu, Y. et al. Correlated insulating states at fractional fillings of moiré superlattices. Nature 587, 214–218 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Gu, J. et al. Dipolar excitonic insulator in a moiré lattice. Nat. Phys. 18, 395–400 (2022).

    Article  CAS  Google Scholar 

  • Chen, D. et al. Excitonic insulator in a heterojunction moiré superlattice. Nat. Phys. 18, 1171–1176 (2022).

    Article  CAS  Google Scholar 

  • Zhang, Z. et al. Correlated interlayer exciton insulator in heterostructures of monolayer WSe2 and moiré WS2/WSe2. Nat. Phys. 18, 1214–1220 (2022).

    Article  CAS  Google Scholar 

  • Zidan, M. A., Strachan, J. P. & Lu, W. D. The future of electronics based on memristive systems. Nat. Electron. 1, 22–29 (2018).

    Article  Google Scholar 

  • Christensen, D. V. et al. 2022 roadmap on neuromorphic computing and engineering. Neuromorphic Comp. Eng. 2, 022501 (2022).

    Article  Google Scholar 

  • Akarvardar, K. & Wong, H.-S. P. Technology prospects for data-intensive computing. Proc. IEEE 111, 92–112 (2023).

    Article  CAS  Google Scholar 

  • Sangwan, V. K. & Hersam, M. C. Neuromorphic nanoelectronic materials. Nat. Nanotechnol. 15, 517–528 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Xue, F. et al. Integrated memory devices based on two-dimensional materials. Adv. Mater. 34, 2201880 (2022).

    Article  CAS  Google Scholar 

  • Sangwan, V. K., Liu, S. E., Trivedi, A. R. & Hersam, M. C. Two-dimensional materials for bio-realistic neuronal computing networks. Matter 5, 4133–4152 (2022).

    Article  Google Scholar 

  • Niu, R. et al. Giant ferroelectric polarization in a bilayer graphene heterostructure. Nat. Commun. 13, 6241 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Woods, C. et al. Charge-polarized interfacial superlattices in marginally twisted hexagonal boron nitride. Nat. Commun. 12, 347 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yasuda, K., Wang, X., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Stacking-engineered ferroelectricity in bilayer boron nitride. Science 372, 1458–1462 (2021).

    Article  ADS  CAS  Google Scholar 

  • Vizner Stern, M. et al. Interfacial ferroelectricity by van der Waals sliding. Science 372, 1462–1466 (2021).

    Article  ADS  CAS  Google Scholar 

  • Deb, S. et al. Cumulative polarization in conductive interfacial ferroelectrics. Nature 612, 465–469 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Wang, X. et al. Interfacial ferroelectricity in rhombohedral-stacked bilayer transition metal dichalcogenides. Nat. Nanotechnol. 17, 367–371 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Weston, A. et al. Interfacial ferroelectricity in marginally twisted 2D semiconductors. Nat. Nanotechnol. 17, 390–395 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng, Z. et al. Electronic ratchet effect in a moiré system: signatures of excitonic ferroelectricity. Preprint at arxiv.org/abs/2306.03922 (2023).

  • Gallimore, A. R., Kim, T., Tanaka-Yamamoto, K. & De Schutter, E. Switching on depression and potentiation in the cerebellum. Cell Rep. 22, 722–733 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Tian, H. et al. Emulating bilingual synaptic response using a junction-based artificial synaptic device. ACS Nano 11, 7156–7163 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Yeh, C.-W. S. & Wong, S. S. Compact one-transistor-N-RRAM array architecture for advanced CMOS technology. IEEE J. Solid-State Circuits 50, 1299–1309 (2015).

    Article  ADS  Google Scholar 

  • Salahuddin, S., Ni, K. & Datta, S. The era of hyper-scaling in electronics. Nat. Electron. 1, 442–450 (2018).

    Article  Google Scholar 

  • Deng, L. The MNIST database of handwritten digit images for machine learning research [best of the web]. IEEE Signal Process. Mag. 29, 141–142 (2012).

    Article  ADS  Google Scholar 

  • Hopfield, J. J. Pattern recognition computation using action potential timing for stimulus representation. Nature 376, 33–36 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Gütig, R. & Sompolinsky, H. The tempotron: a neuron that learns spike timing–based decisions. Nat. Neurosci. 9, 420–428 (2006).

    Article  PubMed  Google Scholar 

  • Cooper, L. N. & Bear, M. F. The BCM theory of synapse modification at 30: interaction of theory with experiment. Nat. Rev. Neurosci. 13, 798–810 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Philpot, B. D., Sekhar, A. K., Shouval, H. Z. & Bear, M. F. Visual experience and deprivation bidirectionally modify the composition and function of NMDA receptors in visual cortex. Neuron 29, 157–169 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Gjorgjieva, J., Clopath, C., Audet, J. & Pfister, J.-P. A triplet spike-timing–dependent plasticity model generalizes the Bienenstock–Cooper–Munro rule to higher-order spatiotemporal correlations. Proc. Natl Acad. Sci. USA 108, 19383–19388 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Z. et al. Toward a generalized Bienenstock–Cooper–Munro rule for spatiotemporal learning via triplet-STDP in memristive devices. Nat. Commun. 11, 1510 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo, W., Fouda, M. E., Eltawil, A. M. & Salama, K. N. Neural coding in spiking neural networks: a comparative study for robust neuromorphic systems. Front. Neurosci. 15, 638474 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu, S. et al. Associative memory realized by a reconfigurable memristive Hopfield neural network. Nat. Commun. 6, 7522 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  • De Zeeuw, C. I. & Yeo, C. H. Time and tide in cerebellar memory formation. Curr. Opin. Neurobiol. 15, 667–674 (2005).

    Article  PubMed  Google Scholar 

  • Prince, L. Y., Bacon, T. J., Tigaret, C. M. & Mellor, J. R. Neuromodulation of the feedforward dentate gyrus–CA3 microcircuit. Front. Synaptic Neurosci. 8, 32 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu, H., Ye, J., Zhu, G., Ren, Z. & Zhang, C. Generalizable episodic memory for deep reinforcement learning. In Int. Conference on Machine Learning 4380–4390 (PMLR, 2021); https://proceedings.mlr.press/v139/hu21d.html.

  • Wan, W. et al. A compute-in-memory chip based on resistive random-access memory. Nature 608, 504–512 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Pietrzak, P., Szczęsny, S., Huderek, D. & Przyborowski, Ł. Overview of spiking neural network learning approaches and their computational complexities. Sensors 23, 3037 (2023).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Ma, K. Y. et al. Epitaxial single-crystal hexagonal boron nitride multilayers on Ni (111). Nature 606, 88–93 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Zhang, J. et al. Fast synthesis of large-area bilayer graphene film on Cu. Nat. Commun. 14, 3199 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Mannix, A. J. et al. Robotic four-dimensional pixel assembly of van der Waals solids. Nat. Nanotechnol. 17, 361–366 (2022).

    Article  ADS  CAS  PubMed  Google Scholar