Summary: The invention of scanning probe microscopy revolutionized the way electronic phenomena are visualized1. Whereas present-day probes can access a variety of electronic properties at a single location in space2, a scanning microscope that can directly probe the quantum mechanical existence of an electron at several locations would provide direct access to key quantum properties of electronic systems, so far unreachable. Here, we demonstrate a conceptually new type of scanning probe microscope—the quantum twisting microscope (QTM)—capable of performing local interference experiments at its tip. The QTM is based on a unique van der Waals tip, allowing the creation of pristine two-dimensional junctions, which provide a multitude of coherently interfering paths for an electron to tunnel into a sample. With the addition of a continuously scanned twist angle between the tip and sample, this microscope probes electrons along a line in momentum space similar to how a scanning tunnelling microscope probes electrons along a line in real space. Through a series of experiments, we demonstrate room-temperature quantum coherence at the tip, study the twist angle evolution of twisted bilayer graphene, directly image the energy bands of monolayer and twisted bilayer graphene and, finally, apply large local pressures while visualizing the gradual flattening of the low-energy band of twisted bilayer graphene. The QTM opens the way for new classes of experiments on quantum materials. A quantum twisting microscope based on a unique van der Waals tip and capable of performing local interference experiments opens the way for new classes of experiments on quantum materials.

The quantum twisting microscope

Source: Ilani, S. - 1970-01-01T00:00:00Z

0 UP DOWN

  • Binnig, G. & Rohrer, H. Scanning tunneling microscopy. Surf. Sci. 152–153, 17–26 (1985).

    Article  ADS  Google Scholar 

  • Bian, K. et al. Scanning probe microscopy. Nat. Rev. Methods Primers 1, 36 (2021).

    Article  CAS  Google Scholar 

  • Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233–12237 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Eisenstein, J. P., Gramila, T. J., Pfeiffer, L. N. & West, K. W. Probing a two-dimensional Fermi surface by tunneling. Phys. Rev. B 44, 6511–6514 (1991).

    Article  ADS  CAS  Google Scholar 

  • Murphy, S. Q., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Lifetime of two-dimensional electrons measured by tunneling spectroscopy. Phys. Rev. B 52, 14825–14828 (1995).

    Article  ADS  CAS  Google Scholar 

  • Auslaender, O. M. et al. Tunneling spectroscopy of the elementary excitations in a one-dimensional wire. Science 295, 825–828 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Britnell, L. et al. Resonant tunnelling and negative differential conductance in graphene transistors. Nat. Commun. 4, 1794 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Mishchenko, A. et al. Twist-controlled resonant tunnelling in graphene/boron nitride/graphene heterostructures. Nat. Nanotechnol. 9, 808–813 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Fallahazad, B. et al. Gate-tunable resonant tunneling in double bilayer graphene heterostructures. Nano Lett. 15, 428–433 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Wallbank, J. R. et al. Tuning the valley and chiral quantum state of Dirac electrons in van der Waals heterostructures. Science 353, 575–579 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Jang, J. et al. Full momentum- and energy-resolved spectral function of a 2D electronic system. Science 358, 901–906 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Prasad, N. et al. Quantum lifetime spectroscopy and magnetotunneling in double bilayer graphene heterostructures. Phys. Rev. Lett. 127, 117701 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Lin, K. et al. Emergence of interlayer coherence in twist-controlled graphene double layers. Phys. Rev. Lett. 129, 187701 (2022).

  • Seo, Y. et al. Subband-resolved momentum-conserved resonant tunneling in monolayer graphene/h-BN/ABA-trilayer graphene small-twist-angle tunneling device. Appl. Phys. Lett. 120, 083102 (2022).

    Article  ADS  CAS  Google Scholar 

  • Koren, E. et al. Coherent commensurate electronic states at the interface between misoriented graphene layers. Nat. Nanotechnol. 11, 752–757 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Chari, T., Ribeiro-Palau, R., Dean, C. R. & Shepard, K. Resistivity of rotated graphite–graphene contacts. Nano Lett. 16, 4477–4482 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Ribeiro-Palau, R. et al. Twistable electronics with dynamically rotatable heterostructures. Science 361, 690–693 (2018).

    Article  ADS  CAS  Google Scholar 

  • Yang, Y. et al. In situ manipulation of van der Waals heterostructures for twistronics. Sci. Adv. 6, eabd3655 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, C. et al. In-situ twistable bilayer graphene. Sci. Rep. 12, 204 (2022).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Frisenda, R. et al. Recent progress in the assembly of nanodevices and van der Waals heterostructures by deterministic placement of 2D materials. Chem. Soc. Rev. 47, 53–68 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Bistritzer, R. & MacDonald, A. H. Transport between twisted graphene layers. Phys. Rev. B 81, 245412 (2010).

    Article  ADS  Google Scholar 

  • Mele, E. J. Commensuration and interlayer coherence in twisted bilayer graphene. Phys. Rev. B 81, 161405 (2010).

    Article  ADS  Google Scholar 

  • Damascelli, A., Hussain, Z. & Shen, Z.-X. Angle-resolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. 75, 473–541 (2003).

    Article  ADS  CAS  Google Scholar 

  • Zhang, H. et al. Angle-resolved photoemission spectroscopy. Nat. Rev. Methods Primers 2, 54 (2022).

    Article  CAS  Google Scholar 

  • Feenstra, R. M., Jena, D. & Gu, G. Single-particle tunneling in doped graphene-insulator-graphene junctions. J. Appl. Phys. 111, 043711 (2012).

    Article  ADS  Google Scholar 

  • Elias, D. C. et al. Dirac cones reshaped by interaction effects in suspended graphene. Nat. Phys. 7, 701–704 (2011).

    Article  CAS  Google Scholar 

  • Lopes dos Santos, J. M. B., Peres, N. M. R. & Castro Neto, A. H. Continuum model of the twisted graphene bilayer. Phys. Rev. B 86, 155449 (2012).

    Article  ADS  Google Scholar 

  • Carr, S., Fang, S., Jarillo-Herrero, P. & Kaxiras, E. Pressure dependence of the magic twist angle in graphene superlattices. Phys. Rev. B 98, 085144 (2018).

    Article  ADS  CAS  Google Scholar 

  • Yankowitz, M. et al. Dynamic band-structure tuning of graphene moiré superlattices with pressure. Nature 557, 404–408 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Yankowitz, M. et al. Tuning superconductivity in twisted bilayer graphene. Science 363, 1059–1064 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Chittari, B. L., Leconte, N., Javvaji, S. & Jung, J. Pressure induced compression of flatbands in twisted bilayer graphene. Electron. Struct. 1, 015001 (2018).

    Article  Google Scholar 

  • Chebrolu, N. R., Chittari, B. L. & Jung, J. Flat bands in twisted double bilayer graphene. Phys. Rev. B 99, 235417 (2019).

    Article  ADS  CAS  Google Scholar 

  • Lee, C., Wei, X., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Ares, P. et al. Tunable graphene electronics with local ultrahigh pressure. Adv. Funct. Mater. 29, 1806715 (2019).

    Article  Google Scholar 

  • Chen, G. et al. Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice. Nat. Phys. 15, 237–241 (2019).

    Article  CAS  Google Scholar 

  • Zhou, H., Xie, T., Taniguchi, T., Watanabe, K. & Young, A. F. Superconductivity in rhombohedral trilayer graphene. Nature 598, 434–438 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Zhou, H. et al. Half- and quarter-metals in rhombohedral trilayer graphene. Nature 598, 429–433 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Shi, Y. et al. Electronic phase separation in multilayer rhombohedral graphite. Nature 584, 210–214 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Kennes, D. M. et al. Moiré heterostructures as a condensed-matter quantum simulator. Nat. Phys. 17, 155–163 (2021).

    Article  CAS  Google Scholar 

  • Mak, K. F. & Shan, J. Semiconductor moiré materials. Nat. Nanotechnol. 17, 686–695 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Yabuki, N. et al. Supercurrent in van der Waals Josephson junction. Nat. Commun. 7, 10616 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Farrar, L. S. et al. Superconducting quantum interference in twisted van der Waals heterostructures. Nano Lett. 21, 6725–6731 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, S. Y. F. et al. Emergent interfacial superconductivity between twisted cuprate superconductors. Preprint at https://arxiv.org/abs/2108.13455 (2021).